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A nonlinear characteristic value problem modeling a gas glow discharge is con- 
sidered. A small parameter solution is found which corresponds to the classical Schottky 
equilibrium approximation, The operating characteristic is computed using the small 
parameter solution as a starting point. Uniqueness of the operating characteristic is 
inferred from a combination of global mathematical analysis and numerical analysis. 
The operating characteristic is stable. Finally, an observation on constriction is made. 

I. PHYSICAL BACKGROUND AND PROBLEM STATEMENT 

Electrical discharges in gases have long been studied for their intrinsic interest 
[6, 111, as well as for applications ranging from fluorescent lighting to high-power 
lasers. A phenomenon of interest in certain applications is called “constriction.” 
In some cases, as current through the discharge increases past a certain value, 
the voltage across it drops abruptly, and the glowing portion of the gas constricts, 
so that it no longer extends across the entire radius of the discharge tube, Hysteresis 
has been reported in connection with constriction [7], which suggests the possibility 
of two equilibrium states of the discharge for certain currents. Mathematical 
models of discharge equilibria, which generally take the form of nonlinear charac- 
teristic value problems, are available [5, lo]. It seems an interesting application of 
the qualitative theory of ordinary differential equations to determine whether or 
not these problems have two physically meaningful solutions. If they do, the two 
solutions may explain constriction with the physical phenomena accounted for 
in the model considered; if they do not, and if the models’ unique solutions do 
not display an abrupt voltage drop, then other physical phenomena must be 
involved in constriction. The model considered in this paper has unique solutions 
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and does not have an abrupt voltage drop. However, it does have a “mild con- 
striction,” which is described in the last section. The results presented here are 
inferred from both mathematical and numerical analysis. 

The model considered here can be reduced to the pair of nonlinear differential 
equations 

(ru(T, Eo) T’)’ + rb(T, u, E,) T = 0, 
(rc(T, E,) u’)’ + rd(T, u, E,) u = 0, (t = $), (1.1) 

subject to the boundary conditions 

T’(0) = 0, u’(0) = 0, 

T(1) = 1, u(1) = 0. 
(1.2) 

In (l.l), r is the dimensionless radius, T is the dimensionless ion temperature 
(=background gas temperature) and u is a dimensionless form of the sum of 
the ion and electron pressures (=niTi + n,T,). The axial field strength E,, is the 
characteristic value. The current is proportional to -T’(l)/&, . 

This model is the self-consistent equilibrium condition of a nonlinear ionization 
wave model derived by D. A. Lee, as explained in [lo]. It differs from the model 
of [5, Eqs. (12)--(22)] in that recombination is included and in that a relation of the 
form 

T, = Cl(EoT)4/3 (1.3) 

replaces [5, Eq. (22)], which has the form 

T, = C&T). (1.4) 

In (1.3) and (1.4), C, and C, are phenomenological constants, while the other 
quantities have the same meanings as in [5]. Physically, the difference between 
the two models, aside from recombination, can be shown to arise from different 
modeling of momentum transfer by collisions between electrons and the back- 
ground gas. 

We will establish the existence of a small parameter solution to (l.l), (1.2) is 
Section 2, and this solution will be used in Section 3 to compute the operating 
characteristic. Uniqueness of the operating characteristic will be dealt with in 
Section 4, and finally Section 5 contains several qualitative results related to the 
operating characteristic. 

The original modeling equations giving rise to (1.1) and (1.2) are listed in the 
Appendix. The coefficients of (1.1) are 

4T, 4,) = 1, 

b(T, u, E,) = PEF’3u/(T(1 + DE,4’3T1’9)2, 

4T 4,) = Z 

581/18/4-z 



362 LOUIS B. BUSHARD 

and 

d(T, u, E,) = (AEi’3T7’3(1 + DEt’3T1’3) exp(--B/(E,T)4’3) 

- CE,2’3u)/( T4’3( 1 + DE,4’3T1’3))2, 

where A, B, C, D, and P are constants which can be found from the equations in 
the Appendix and are given there. a, b, c, and d are real analytic functions of T, 
u, and E,, for 0 < T < co, -co < u < co, 0 < E,, < co. We have written the 
differential equations in the general form (1.1) because (i) one might wish to 
consider a variable thermal conductivity, a(T, E,), for the background gas and a 
momentum transfer collision frequency, essentially l/c(T, E,,), of more general 
variation; (ii) the small parameter analysis of Section 2 as well as the global 
analysis of [3] applies to a much broader class of mathematical models than the 
specific model considered; and (iii) consequently, the numerical computations of 
Sections 3 and 4 can be expected to succeed for a broader class of differential 
equation models. 

We are interested only in physically meaningful solutions of (1.1) and (1.2). 
This requires that u(r) > 0, 0 < r < 1 and T(r) > 0, 0 < r < 1. Further, 
(1.1) is not meaningful if T, is too large and a generous bound of T, < 4 eV 
translates as E,,T < 0.36B3j4; we let T&E,,) = 0.36B3/4/E, . Finally, the validity 
of (1.1) is based on the plasma’s being weakly ionized and in this connection we 
point out that for the values of E, in this paper u = 150 corresponds to a value of 
approximately 1O-5 for the ratio of the ion number density to the background 
gas number density. 

2. ANALYTICITY AND THE SMALL PARAMETER SOLUTION 

Consider the initial value problem for (1.1) with T(0) = T, , T’(0) = 0, 
u(O) = uO, u’(O) = 0. A C2 solution to this problem must satisfy the integral 
equations 

T(r) = To - lr sa(T(i), Eo) lo” WYO, u(t), Eo) T(t) dt & 

I 
T 

u(r) = u0 - 
1 ----- 

o NW, Eo) s * td(T(t), u(t), Eo) u(t) dt ds, 
o 

(2.1) 

and a Co solution to (2.1) is necessarily C2 and satisfies the initial value problem 
for (1.1). Using only the Lipschitz continuity of a, b, c, and d and the nonvanishing 
of a and c in the Picard iteration of (2.1), it can be shown that solutions to (2.1) 
exist, are unique and continuous (cf. [4, Chap. I]). We denote these solutions by 
(T(r, To , u. , E,), u(r, To , u, , E,)). We can make use of the analyticity of a, b, c, 
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and d to show further that (T(r, T, , u. , E,), U(I, To, u. , E,)) is analytic in 
(r, To, u, , Eo). The analyticity can be established by the methods used in [4, 
Section 8, Chap. 11; the reader is also directed to [2]. 

The problem to be solved can now be simply stated; namely, find all values of 
(To , u. , E,) such that 

G(To , uo ,&I) = 0, 

where G is the two-dimensional vector function defined by 

G(To , uo , Eo) = T(l, To, uo, 4,) - 1, 

GVo , uo , Eel = 41, To , uo , Eel. 

Once a solution is found, the value of the current is Z(l, To , u, , E,), where 

Z(r, To , u. , E,) = -QrW, To , u. , EoWo (2.2) 

and Q can be found from the equations in the Appendix and is given there. 
Using the property that b(T, 0, E,) = 0 for T, E, > 0 and uniqueness of 

solutions, we obtain the trivial solution 

TO-, To , 0, Eo) = To , u(r, To , 0, E,) = 0. 

In particular, G(l, 0, E,) = 0 for E. > 0. We shall seek solutions to G = 0 
by implicit function theorem methods for small values of the parameter u. . 

For the application of the implicit function theorem we have need for the various 
partial derivatives of the solution (T(r, To, u, , E,), u(r, To , u. , E,)) when r = 1 
and u, = 0. Partial derivatives will be denoted with subscripts. We shall show the 
computation of uuo(r, To , 0, E,), the remaining derivatives being found by similar 
techniques [9]. First, differentiating the second equation of (1.1) with respect to 
24, gives 

(rcu&)’ + (rcrTuou’)’ + r&T,, + &u,,) u + r du,, = 0. 

Setting u, = 0 in this identity gives the linear equation 

MT0 , E,) &,,(r, To , 0, EON’ + r4To , 0, Eo) q,(r, To , 0, E,) = 0. 

Second, u,~(O, To, 0, E,) = 1, u:~(O, To, 0, E,) = 0. Thus 

u,&r, To , 0, Eo) = JoColor), 

where 01~ = a.(T,, , E,) and 

47 Eo) = MT, 0, EoMY E,W2. 
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The same methods give 

Returning to the function G(T, , u. , E,), we can compute the matrix 
G’(To , u. , E,) of partial derivatives at U, = 0, and it is 

Suppose that at a fixed value of E, , say E, , we have ~~~(1, 1, 0, Eo) # 0. Then the 
implicit function theorem implies that G(T, , u. , E,) = 0 has a unique solution 
To = To#(Eo), U, = u,#(E,) for E, in a sufficiently small neighborhood of E, , 
and To+@,) = 1, uo+(Eo) = 0. However, the uniqueness of the solution implies 
that T,#(E,) = 1, uo#(Eo) = 0 for all E, in the aforementioned neighborhood, 
and these values give the trivial solution to (1.1) and (1.2). 

In order to acquire nontrivial solutions for small U, we must have 
u,,(l, 1, 0, E,) = 0 or equivalently, ar(1, E,) = 5, where 5 is a positive zero of Jo . 
However, 5 must be the smallest positive zero, 5, , of J,, , for larger zeros imply 
that u(r, To, a0 , E,) is negative for some values of r in [0, l] when (To , u. , Eo) 
is sufficiently close to (1, 0, E,). 

Let us now discuss the equation 

This equation has two solutions. However, the larger solutions is such that 
E. - 1 > 0.36Bs/*. The smaller solution satisfies E, - 1 < 0.36B3J4, we denote it 
by Eo, 3 E,, = 463.6 and it corresponds to the Schottky equilibrium. Later, we 
will have use for the function T = T"(E,) defined as the solution of the equation 
a(T, E,) = co subject to E,T < 0.36B3/*. Ta is well defined, for one can verify that 
+ > 0 for E,T < (4B/5)s/4 and that 01 EQ > 0 for E,T < (2B)3/4. T = T"(E,) is 
strictly decreasing and Ta(Eo,) = 1. 

The choice E, = E,, gives u,+( 1, 1, 0, Eo) = 0. The function u,,Jo([,,r), when u,, 
is small, corresponds to the Schottky equilibrium approximation [12]. The matrix 
G’(l, 0, E,,) is 

( 
1 --b,(L 0, EosYW Eo,) 50”) 0 
0 0 1 0’ 

This matrix is degenerate and the implicit function theorem does not apply. 
Fortunately, the degeneracy can be removed by replacing ~(1, To , u. , E,) 
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with U(l, T,,,u,, E,), where U is defined by u(r, T,, , u,, , Eo) = u,U(r, T,, , u,, , E,,). 
(T(r, To , u. , E,), U(r, To , U, , Eo)) satisfy the differential equations 

(ru(T, E,) T’)’ + rb(T, uoU, Eo) T = 0, 

(rc(T, E,) U’)’ + rd(T, u,U, E,) U = 0, 

with the initial conditions 

T(O) = To , U(0) = 1, 

T’(0) = 0, U’(0) = 0. 

And we have the special solution T(r, To , 0, Eo) = To , U(r, To, 0, E,) = J,(a,,r). 
Let F(T, , u. , E,) be the two-dimensional vector function defined by 

NT, , uo 3 Eo) = T(l, To , uo , Eel - 1, 

W’o , uo 3 Eo) = W, To, ~0, Eo). 

The equations F = 0 and G = 0 are equivalent when U, # 0. We have 

F(1, 0, E,,) = 0. 

The matrix P’( 1 , 0, E,,) is 

( 
1 --but1 3 0, EoaYt4l, Eos) 5,“) 0 

JoGo) 4, EoJ K&h ho, Eo3 Jo’(50) %&L EOJ ) * 

Now ~$1, EoJ > 0 and consequently, the submatrix, 

&,(I 3 0, EoJ I;,&, 0, Eo3 

F,& 0, Eos) Fz& 0, EoJ ’ 

of F’(l, 0, E,J is invertible. The implicit function theorem can now be applied 
and it shows that the equation F(T, , u. , E,) = 0 has a solution of the form 
To = To*(u,,), E, = E,*(u,) for u. in a sufficiently small neighborhood of U, = 0, 
with T,*(O) = 1, E,*(O) = Eo8 . Further, there is a neighborhood of (1, 0, EoJ in 
which the only solutions of F = 0 are given by (To*(uo), u, , E,,*(uo)) for u. in the 
aforementioned neighborhood. To* and E,* are analytic. The current is also an 
analytic function of U, and it is given by I = I*(uo), where 

I*(uo) = -QT’tL To*(uol, uo 3 Eo*t~o)HEo*t~o) 

and I*(O) = 0. 
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Now UU,(r, T,, , 0, E,,) can be found by the techniques above together with the 
method of variation of constants, and for 0 < olOr < 5,, it is given by 

= -Jo(aor) lo’ & ot SJO(~OS> s 
+ 2aT(To ’ E”) J ( 

010 
0 a0 s)(Jo(cYos) - 

with 

UL 09 EOJ ar(l E. ) Jo’(50) - + [ dw&ogj8) + UL 0, EOJ =- 41, EOJ ’ s 50” 41, EOJ 
x 

( 
; c,;(:‘EE”f + 2 

3 OS 
-‘li Eo8))](jgo tJo3(t) dt) (~o”Jo’(~o))-l. 

0 0 

With the last formula we can compute the derivatives of To*, Eo*, and Z* w.r.t. 
u, at u. = 0 and they are 

E,*‘(o) [ 40 9 0, EoJ + W, 0, Eos) ( 1 cdl, Eos) 241, EOJ = - c(l, Eos) 41, Eos) 2 41, EoJ + 50 )I 
X (s” tJo3(t) dt) (~03J~z<tr,>)-’ @e&l, E,,sN1, 

Z*‘(O) = -Q~~.U. 0, EoJML Eon> EoslVo’(~oYSol. 

We note that Z*‘(O) > 0. For the modeling constants chosen E,*‘(O) (=17.2) is 
also positive. 

Since Z*‘(O) > 0, the set of points (Z*(u,), E,*(u,)) for small u. > 0 in the 
Z - E, plane can be expressed as the graph of a function of I. This graph has the 
property that dE,/dZ llSo = E,*‘(O)/Z*‘(O) > 0, i.e., the operating characteristic 
has positive slope for small currents. This property is in agreement with certain 
experiments performed at the Aerospace Research Laboratories [l]. Observing 
that b, > 0, we fmd that the expression for Et’(O) indicates that the positive slope 
property requires a nonzero recombination rate, essentially d, , a feature not 
included in the model of Ecker and ZSller. Now the small parameter analysis can 
also be applied successfully to (1.1) for the case of a radiation-convection-conduction 
boundary condition to show the existence of a smallparameter solution. Using a wall 
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emissivity of 0.9 along with a convective heat transfer coefficient proportional 
to (T(1) - 1)114, dE,/dI I,=,, was computed and found to be negative, which also 
agrees with experiment. 

It is of some value, as will be seen in Section 4, to consider the equations 

T(l, To , uo , Eel - 1 = 0, W, To , uo , ED) = 0 

separately. From T(1, 1, 0, E,) - 1 = 0, T,,(l) 1, 0, E,) = 1, and T@, LO, E,) < 0, 
we see that a solution u, = uo#(To , E,) exists to the first equation for 1 To - 1 j 
sufficiently small; uo#(l, E,) = 0 and u. # has positive slope at To = 1. Thus 
for a given E, , there is a curve of positive slope in the T - u plane emanating from 
T = 1, u = 0 with the property that each point of the curve is an initial value such 
that T(l, To , u. , Eo) = 1. Concerning the second equation, let To = T”(E,). 
Then U(1, To, 0, E,) = 0 and Ur,<l, To, 0, E,) = .&,‘(llo) a,(T, , Eo) < 0. A 
separate calculation shows that U&, To , 0, E,) > 0 at least for 300 < E, < 500 
for the modeling constants chosen. This calculation is very tedious and uses a 
formula for V&, To , 0, E,) that is similar to the formula for U&, 1, 0, EoJ. 
For this range of E, we see that a solution u, = ut#(T, , Eo) exists to the second 
equation for 1 To - To 1 sufficiently small; $“(T, , E,) = 0 and ~0”” has positive 
slope at To = To . For such an E,, , we have that there is a curve of positive slope 
in the T - u plane emanating from T = To, u = 0 with the property that each 
point of the curve is an initial value such that U(1, To , u. , Eo) = 0. We note 
further that To > 1 when E, < E,, and To < 1 when E, > E,, . 

3. COMPUTATION OF THE OPERATING CHARACTERISTIC 

The equation F(T, , u. , E,) = 0 was solved for To = To*(uo), E, = Eo*(uo) by 
fixing u. and using Newton iteration. The necessary partial derivatives were found 
by integrating the system of ordinary differential equations satisfied by the set of 
partial derivatives through use of DIFSUB by Gear [S]. The initial guesses for the 
Newton iteration were provided as follows. For u, = 0 and 0.1, To = 1 and 
E, = 463.5 were the initial guesses. Once To*(O), Eo*(0), T,*(O.l), and E,*(O.l) 
were found, linear extrapolation on To* and Eo* was perfomed to provide initial 
guesses for the range 0 < u. < 10. At u, = 10 we are beyond the maximum of 
the operating characteristic. For u. > 10, the initial guesses for To*(uo) and 
E,*(u,) were quite effectively extrapolated from a fourth-order Lagrange inter- 
polating polynomial. 

The computation was carried out for 0 < u. < 467 with no indication that the 
Newton iteration would fail for larger values of u, . The qualitative behavior of 
the solutions To = To*(uo) and E, = E,*(u,) as well as I = Z*(uo) is indicated 
in Figs. l(a)-(c). We denote the maximum value of E, in Figs. l(b) and 2 by EOM , 
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FIG. 1. The qualitative behavior of the solutions To = T,,*(u,J, E,, = ,??,,*(uO) of 
F(To , uo , &) = 0, as well as the corresponding current I = I*(& and the center number 
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FIG. 2. The constant wall temperature characteristic for (1.1). &, is in volts/meter and Z 
is in milliamps. 
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E,,,,,, = 471.8. Computations were not continued beyond u,, = 467 because the 
validity of the equations becomes tenuous and because significant changes in the 
solutions to F = 0 were not expected. 

We mention that if the initial guesses for the Newton iteration were not close 
to the solutions of F = 0, t,hen the differential equations for the partial derivatives 
were difficult to integrate with nonstiff methods; stiff methods were not used. 

The Jacobian matrix of the map (T, , u,, , E,) + (T(1) To , U, , E,), ~(1, T, , U, , E,), 
1(1, T,, , U, , E,,)) was computed along the solution T,, = To*(uo), E, = Eo*(uo) and 
it was found to be invertible for U, > 0. An important implication is that the 
operating characteristic is locally unique. We will deal with global uniqueness 
in the next section. 

4. NUMBER OF SOLUTIONS 

A numerical search procedure indicates that the curves of Figs. l(a) and (b) 
provide the only solutions of F = 0. The procedure utilizes two results of [3]. 
The first result is that two functions of T,, and E, are found, u = %(T, , E,), 
u = Lz?(To , E,,), such that if for a given E, , (T, , uO) is an initial value corre- 
sponding to a nontrivial solution to (1.1) and (1.2), then 

and 
1 < To < T.dEo) 

-E”(To , Eo) < uo < @(To, Eel. 

Thus, one need only consider initial values satisfying these inequalities. 
We will consider initial values lying in a somewhat large set. To describe that 

set we need the functions u = h(T, E,) and u = k(T, Eo) defined respectively 
by the equations 

@“, u, Eel = 0, 
and 

fr(T, u, Eel g(T, Eel + s,(T, u, Eel f(T, u, Eo) = 0, 

where f = d(T, U, Eo) u/(b(T, U, Eo) T) and g = c(T, E,)/a(T, E,). These equations 
are linear in u and give explicit expressions for h and k. We easily verify that 
0 < h(T,E,),k(T,E,) < h(T,E,), and d(T, u,E,)(u - h(T,E,)) -c 0 ifu # h(T, Eo). 

It is the case that @(To, E,) < h(T, , E,). The larger set is 

1 -c To < TM@,), (4.1) 
mW(To , E,), W. , EON - l/(1 + C In To/(PE~'sT~'9(1 + DE~'3T~'3))))) 

< uo < W’o , Eoh 
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where the second function on the left-hand side is Z(T,, , EO) when 8(T, , EJ < 
k(T, , I$). For a given E, , we denote the set of points (7’, , uO) satisfying (4.1) as 
well as 0 < u. < uo,max by NE,, uo,max). 

The second result of [3] is that when (To , uo) is an initial value for 
a solution to (1 .I) and (1.2) for a given E, , then d(T, , u. , E,) > 0 and 
u’(r, To , U, , E,) < 0, 0 < P < 1. An integration of the first equation in (1.1) 
shows that T’(r, To, u. , Eo) < 0,O < r < 1 also. Consequently, y1 = T, yz = T’, 
y3 = U, y4 = u’ is a solution to 

Y,’ = yz*, 

y,’ = - ( ~T(YI*> Eo) 

4y,*, Eel 
yz* + + 1 Yz* - 

NY,*, y3*, Eo) Y1* 

a(~,*, Eo) ’ 
(4.2) 

Ya’ = y4*7 

y4’ = - ( CT(YI*> Eo) ~YI”, ys*> Eel YI* 
c(Y,*P Eel 

Yz* + + 1 Y4* - 
c(Y,*, Eel ’ 

for r > 0, where yl* = max(1, yJ, y,* = min(O, yJ, y3* = max(O, yS), 
Y4* = min(O, yJ and 

Y,‘(O) = 0, 

Y,‘(O) = - !i[b(To , uo , Eel T&To, Et,)], 
(4.3) 

Y3’@) = 0, 

YJ’@) = - BkVo , uo , Eel uo/c(To , &,)I, 

satisfying the boundary conditions 

Y&v = 09 Ydl) = 1, 

Y*(O) = 0, YOU) = 0. 

Consider the initial value problem for (4.2) and (4.3) with y,(O) = To , y,(O) = 0, 
~~(0) = u. , ~~(0) = 0, where the initial values are restricted to 1 < To , 0 < U, , 
and d(T, , u. , I!?,) > 0. This problem has a well-defined C1 solution. For it can 
be shown that ydr, To , u. , E,) = T(r, To , u. , E,), y&, To , u. , E,) = 
T’(r, To , u. , Eo), ydr, To , u. , Eo) = u(r, To , u. , E,), ydr, To , u. , E,) = 
u’(r, To, u. , Eo) for small r > 0, while for any set on which I is bounded away 
from zero the right-hand side of (4.2) is Lipschitz continuous. Further, it is 
elementary to show that these solutions exist for all r > 0. In contrast, numerical 
analysis indicates that the solutions of (1 .l) do not exist for all,r 3 0. Any initial 



ANALYSIS OF A GAS GLOW DISCHARGE MODEL 371 

values leading to a solution to (1.1) and (1.2) for a given E,, must also give a solution 
to 

~4, To , uo , Eel - 1 = 0, (4.4) 
~41, To , uo , Eel = 0, (4.5) 

and (To , U, , E,) must satisfy (4.1). A particular value of considering the equivalent 
problem (4.2)-(4.5) is that the solutions to (4.2) and (4.3) are much easier to 
compute than those for (1.1). 

The numerical search procedure consisted of first choosing an adequately large 
value of 24o,m, for a given E, , e.g., from Fig. l(b), and then superimposing a 
uniform rectangular grid on R(E o , u o,max) and second computing ~~(1, To , u. , E,), 
~~(1, To , u. , E,) at each grid point. The numerical results indicated that the set 
of points (To , uo) for a given E, such that vI( 1, To , u. , E,) - 1 = 0 is the graph of 
a strictly increasing function of To emanating from To = 1, U, = 0 and that 
uI( 1, To , u. , Eo) is strictly increasing in To and strictly decreasing in U, . The results 
also indicated that the set of points (To , uo) such that ~~(1, To , u, , E,) = 0 is the 
graph of a strictly increasing function of To emanating from a point To = To , 

“0 

!(l,)-l-o 
+ arbitrary 

Frcr. 3. The nature of the intersections of the curves y,(l, To , u0 , E,,) - 1 = 0 and 
Ys(L To , uo , J%) = 0. 
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u,, = 0 where T0 < 1 when E, > E,, and i=,, > 1 when E, < E,, , and that 
~~(1, T,, , u0 , E,,) is strictly decreasing in To and strictly increasing in u0 (when 
E, < E,,, it can be shown that y1 = T, yz = T’, y, = U, y4 = U’ for u,, small, and 
consequently, T0 = T*(E,,)). The computation further indicated that the solution 
curves for (4.4) and for (4.5) do not cross if E,, > EOM , that they cross twice if 
Eo, < Eo < EOM 5 and that they cross once if E,, < E,,, (see Fig. 3). When the 
grid output indicated a set of points (To , u,,) where a simultaneous solution to 
(4.4) and (4.5) might lie, Eqs. (4.4) and (4.5) were separately iterated to further 
isolate zeros. The numerical results obtained further reinforced the conclusions 
represented in Fig. 3. 

Lastly, we will make a short note on solutions in a neighborhood of u0 = 0. 
In [3] it is established that 

UOJO (( 
Wtro y To , uo > Eo), 0, Eo) ‘1’ 

4Wo , To , u. , EoL Eo) ) ) r < 4r, To , u. , Eo) 

for 0 < r < r. , where r. is the first zero of u(r, To, u. , E,) provided that 
0 < u. < k(T, , E,). Computation shows that k(1, E,,) > 0. If (To , uo) gives a 
solution to (1.1) and (1.2) for a given E, , then r, = 1 and 

~oJott41 , 0, EoWtl, Eo))““) -=c 0. 

In particular, ol(1, E,) > 5, , or E, > E,, . Thus, there are no solutions to (1 .l) 
and (1.2) for 0 < U, < k(T, , E,) and E. < E,, , and, with regard to the operating 
characteristic, this fact implies that E, > E,, for small positive U, and, in turn, 
for small positive currents. 

5. QUALITATIVE ASPECTS 

For the values of To , u. , E, considered in this paper, Theorem 3.1 of [3] applies 
and it states that the number density corresponding to a solution of (1.1) and (1.2) 
is a strictly decreasing function of r. Another observation is that the ambipolar 
current is positive for 0 < r < 1, for it is proportional to -c(T, E,) u’. 

Next, we asked whether or not small changes in the wall conditions, i.e., in 
T(1, To , u, , E,), ~(1, To , u. , E,), and 1(1, To , U, , Eo) result in large shifts off 
of the operating characteristic, especially at larger currents. The answer is no for 
this model. The eigenvector corresponding to the largest eigenvalue of the Jacobian 
matrix of the inverse map (T(1) To , u,, , E,), u( 1, To , u. , E,), I( 1, To , u. , E,)) - 

(To 9 uo 3 E,) was computed along the solution path (To*(uo), u. , Eo*(uo)), 
0 < u. < 467, and it was found that this vector was nearly parallel to the tangent 
vector of the solution path. Consequently, if a change in (T(l, To , u, , E,), 
u( 1, To , u. , E,), 1(1, To , u. , E,)) was made in the direction which would give rise 
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to the largest change in (T,, , u. , E,), then this change occurs in a direction nearly 
parallel to the path (To*@,), u,, , E,,*(u,,)), 0 < u,, d 467, and thus gives an 
operating point close to the operating characteristic. The second eigenvalue of 
the aforementioned matrix was of moderate magnitude while the third became 
quite small as u,, increased. 

The effect of small perturbations in T(1, T,, , u,, , E,,) and U(1, T, , u0 , E,,) = 
~(1, T, , u,, , &J/U, along constant current lines was also investigated. Let e be a 
two-dimensional unit vector and 6 a small scalar parameter. Consider the equation 

where H(T,, , u,, , E, ,6, e) = F(TO , u,, , E,) - 6e. By comparing iY to F one can 
see that H = 0 has a solution T, = T&u,, , 6, e), E,, = E,,#(u,, , 8, e), for all 
sufficiently small S, such that T,,#(u, , 0, e) = T,,*(u,), E&u, , 0, e) = E,,*(u,). 
Corresponding to T,# and E,,# we obtain the current Z = I#@,, , 6, e) from (2.2). 
The derivatives E&(u, , 0, e), Z&U,, 0, e) are directly computable. It 
was found that if e was chosen so as to make Zs’(u,, 0, e) = 0, then 
1 E,#,(u, , 0, e)/Z&*(u,,)[ < 1. For the purpose of reinforcing this result, (1.1) 
was solved subject to the wall conditions T(1) = 1.01, u(l)/uO = 0.01 and the 
resulting operating characteristic is plotted in Fig. 2. 

Finally, we will make an observation related to the constriction of the visible 
part of the position column. The number density of ions (and electrons) is given 
by n = u/(T + D(E,,T)4/s). Consequently, the number density at the center of 
the column is a function of u,, , n, = n*(u&. Its behavior is very nearly linear as 
indicated in Fig. l(d). In contrast, Figs. l(b) and (c) indicate that the curves 
E, = E,*(u,) and Z = I*@,) become flatter as U, grows. Thus, the maximum n, 
of the number density profile increases linearly with increasing U, while motion 
along the operating characteristic becomes slower. Reference [lo] contains further 
discussion on the profiles of the number density. 

APPENDIX 

1. Original Equations 

6-J)’ = rLWJ n, - ,4TJ wil 
hJJ = -we-C - m,v,J 
(niTi)’ = qfl<E, - miviJ 
(rT,‘)’ = -rv,@,T,/K,, 

E,,Z = -27r(103) K,RT,‘(R) 

veoTe = meve~~0Glmeve)2 

YE0 = i&T,fi2/T,, , v, = c,lTn , vi = Vi/T,, 
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Z(T,) = c,T,1/’ exp(-c,/T,) p(T,) = /3T;l” 

ni = n, = n T, = Ti = T 

n’(0) = 0 T’(0) = 0 

n(R) = 0 T(R) = T, 

subscript i = ion subscript n = neutral particle 

subscript e = electron J = ambipolar current 

T = temperature n = number density 

q,, = electron charge Z = current 

K, = thermal conductivity E, = axial electric field 

R = radius of discharge T, = surface temperature 

m = mass Z = ionization frequency 

p = electron recombination frequency 

E, = radial electric field 

v, , vi = electron, ion momentum transfer collision frequencies 

V eo - - energy transfer collision frequency 

Cl, cz 9 BP ceo 3 3, , Cr are constants 

2. Reference Values 

rref = R, Tref = T, , nmf = 101’, 

Uref = n~ep(qo2E02T,2/m,S,~,o)2’3 

3. The Constants A, B, C, D, P, and Q 

A = (mete f W%) clR2 402 

(m,v,v,,) 

113 

T:L: 
-- 

c = (m,17, + m@J fiR2nref 

T7/3 
ref 

D = T;.$ (--&---‘3 

p = R2nre~T~&:,o 
K, (&)5’3 

Q = -2n(103) K,Tref 
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